Synthesis and characterization of poly(EMA-co-HEA)/SiO₂ nanohybrids

A. Vallés-Lluch a,b,*, J.C. Rodríguez-Hernández a, G. Gallego Ferrera a,b,c, M. Monleón Pradas a,b,c

a Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Cno. de Vera s/n, 46022 Valencia, Spain
b Regenerative Medicine Unit, Centro de Investigación Príncipe Felipe, Av. Autopista del Saler 16, 46013 Valencia, Spain
c Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Valencia, Spain

Article info
Article history:
Received 10 November 2009
Received in revised form 8 April 2010
Accepted 12 April 2010
Available online 24 April 2010

Keywords:
- Nanocomposite
- Hybrid
- Acrylate
- Tetraethyl orthosilicate
- Silica
- Sol–gel

Abstract
A series of silica-based organic–inorganic nanocomposites, which attempt to mimic the properties of mineralized matrix tissues from natural bone or dentin, have been prepared and characterized as potential candidates for the synthetic matrix of scaffolds for bone or dentin regeneration. The synthesis procedure consisted in the copolymerization of ethyl methacrylate (EMA) and hydroxyethyl acrylate (HEA) during the simultaneous acid-catalyzed sol–gel polymerization of tetraethoxysilane (TEOS) as a silica precursor, giving rise to poly(EMA-co-HEA)/SiO₂ nanohybrids with silica contents in the range of 0–30 wt%. Different structures of silica within the organic polymeric matrix were inferred from infrared spectroscopy, energy dispersive X-ray spectroscopy, thermogravimetry, pyrolysis, density assessments, solvent uptake and transmission electron microscopy. TEOS was efficiently hydrolyzed and condensed to silica during the sol–gel process in all cases, and presented a homogeneous distribution in the polymeric matrix, in the form of nanodomains either interdispersed or continuously interpenetrated with the organic network, depending on the silica content. Silica contents above 10% produced co-continuous interpenetrated structures where the silica network reinforces mechanically the organic matrix and at the same time confers bioactivity to the surfaces.

1. Introduction

The incorporation of sol–gel silica derived materials to polymeric matrices constitutes a promising tool to improve mechanical properties or to provide more compatible media for the encapsulation of biological molecules and medicines. The synthesis of hybrids via sol–gel is attractive because of the simplicity and versatility of the sol–gel process, which allows the easy incorporation of a ceramic network into an organic component under mild conditions [1]. The organic–inorganic hybrid materials comprise inorganic networks homogeneously interdispersed or interpenetrated in an organic polymer matrix. In hybrid nanocomposites, the organic and inorganic species are combined at a nanoscale level, i.e., in the form of domains with typical sizes of tens of nanometers [2].

The silica network is expected to reinforce mechanically the organic matrix and at the same time to confer bioactivity to the hybrids. In recent years many works have studied the structure, properties and possible applications of different polymer–silica hybrids, using poly(e-caprolactone) [3–6], poly(2-hydroxyethyl methacrylate) [7–14], poly(2-hydroxyethyl acrylate) [2,15–18], poly(2-methyl methacrylate) [19,20], poly(butyl acrylate) [21], poly(ethylene oxide) [22,23], poly(ethylene oxide-co-epichlorhydrin) [24], polyimide [25], polyanime 6,6 [26], poly(vinyl acetate) [27], poly(vinyl alcohol) [28], etc. The organic component is commonly introduced as a precursor, i.e., a monomer or oligomer, and the mineral part with a silica precursor, such as tetraethoxysilane, TEOS. The polymerization of the organic phase proceeds by the free radical reaction of the monomer induced by a thermal- or photo-initiator, during the simultaneous...
sol–gel polymerization of the silicon alkoxide. This sol–gel process comprises the hydrolysis of the silicon alkoxide to form silanols followed by autocondensation to polymerize into silica polymers, and the aggregation of partially condensed silica molecules to build up the network [1]. These reactions are activated by using either base or acid catalysts, leading, respectively, to favoured hydrolyses and thus large, highly condensed silica particles, or, in the opposite case, to favoured condensations and slightly ramified silica networks and transparent hybrids [2,7,29]. Although hydrolysis and condensations occur concurrently, the relative rate and extent of both reactions and thus the final properties of the materials are affected by the pH, the amount of added water, the hydrophilicity of the polymeric monomer [30], and by the sometimes necessary addition of an alcoholic common solvent to homogenize the solution [31].

In the present work, acrylic monomers have been employed to synthesize and characterize silica-based hybrids, as potential candidates for the synthetic matrix of scaffolds for bone or dentin regeneration. Acrylates have been previously used for biomedical applications because of their good biocompatibility and water permeation characteristics [32–36]. A hydrophobic/hydrophilic copolymer of poly(ethyl methacrylate-co-hydroxyethyl acrylate), poly(EMA-co-HEA), was selected having in mind that materials aimed to be used for bone or dentin regeneration should satisfy two requirements: good mechanical properties and good interfacial contact with biological fluids. This selected copolymer combines the good mechanical properties provided by the ethyl methacrylate (EMA) component and the hydrophilicity of the hydroxyethyl acrylate (HEA) needed not only for the accessibility of biological fluids into the different porous structures, but also for a good miscibility of the TEOS mixture [2]. A 30 wt% of HEA was sufficient to guarantee mutual solubility. Fig. 1 shows images of poly(EMA-co-HEA)/15 wt% SiO2 scaffolds mimicking natural dentin and after bone-like hydroxyapatite coating. The preparation procedure, characterization, and in vitro test of hydroxyapatite deposition are described in detail in a previous work [36].

2. Materials and methods

2.1. Materials

The hybrid nanocomposite materials were obtained by simultaneous polymerization of the organic comonomer mixture and the inorganic silica precursor, similarly as in [7,18]: ethyl methacrylate, EMA (99%, Aldrich) and hydroxyethyl acrylate, HEA (96%, Aldrich), in a 70/30 wt% monomer ratio, were mixed together with a 0.5 wt% of ethylene glycol dimethacrylate, EGDMA (98%, Aldrich), as crosslinking agent and a 2 wt% of benzoyl peroxide, BPO (97%, Fluka), as thermal initiator, relative to monomer weight. Separately, tetraethoxysilane, TEOS, was mixed with distilled water and hydrochloric acid (37%, Aldrich) in the molar ratio 1:2:0.0185, respectively. After 30 min of stirring, both solutions were mixed and stirred for another 30 min. The expected silica content of the nanocomposite samples was adjusted to 0, 5, 10, 15, 20 and 30 wt% by controlling the (EMA + HEA)/TEOS ratio and assuming that the sol–gel reactions were complete. The polymerization reaction was carried out in an oven at 60°C for 21 h and post-polymerization at 90°C for 18 h, within moulds consisting in two glass plates with a rubber band in between, in order to obtain sheets 0.8 mm-thick. Then, they were rinsed in a boiling distilled water/ethanol mixture for 24 h to eliminate monomer residues, and eventually allowed to dry in a vacuum desiccator at 80°C until constant weight. Thus, sheets of poly(ethyl methacrylate-co-hydroxyethyl acrylate), poly(EMA-co-HEA), 70/30 wt% with varying proportions of silica, SiO2, up to 30 wt% could

Fig. 1. SEM images of (a) the transversal and (b) longitudinal sections of the poly(EMA-co-HEA)/15 wt% SiO2 scaffolds. (c) and (d) are the same sections after having been coated by bone-like hydroxyapatite directly nucleated from a simulated body fluid (SBF) solution.
be obtained. Hereafter, these hybrids will be referred to as Hx, x being the percentage of silica. Besides the hybrid materials, sheets of pure poly(ethyl methacrylate), PEMA, and poly(hydroxyethyl acrylate), PHEA, homopolymers were also prepared following the same procedure, as reference systems. The composition of the different samples is given in Table 1.

2.2. Methods

Fourier-transform infrared (FTIR) spectra were collected in a Thermo Nicolet Nexus FTIR spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA), in the attenuated total reflection mode (ATR), to determine the surface compositions. The spectra resulted from averages of 128 scans at 4 cm⁻¹ resolution, between 650 and 4000 cm⁻¹.

Thermogravimetric analyses (TGA) were carried out to determine the decomposition profiles of the bulk samples, and the decomposition residues. Measurements were done in a TA-SDT Q600 thermobalance (TA Instruments, NewCastle, DE, USA) with approximately 7 mg of sample accurately weighed in standard alumina crucibles. The temperature was raised from 25 to 1000°C at a rate of 10 °C min⁻¹ under a nitrogen flow of 50 ml min⁻¹.

Small pieces of the hybrids with 15% SiO₂ and above were pyrolyzed in a tubular oven (Gallur, Manises, Spain), programmed with a 3 h-slope to 1000°C followed by a 4 h-isotherm, under oxygen atmosphere. The obtained residues were analyzed in a JSM-6300 scanning electron microscope (SEM), with the samples previously sputter-coated with gold under vacuum, at 15 kV of acceleration voltage and 15 mm of distance working.

The amount of silica at the surfaces and in the interior of the bulk nanocomposites was quantified by energy dispersive X-ray spectroscopy (EDS) in an Oxford Instruments spectrometer, attached to a JSM-6300 scanning electron microscope (JEOL Ltd., Tokyo, Japan). Samples were previously sputter-coated with carbon under vacuum. Spectra were taken at 10 kV of acceleration voltage and 15 mm of distance working. Silicon was employed as optimization standard. The results presented are the average of three different areas for each nanocomposite.

The carbon, oxygen and silicon amounts could be obtained by EDS on the surfaces and in the bulk (by fracture) of the materials, but the EDS detector cannot reveal the presence of hydrogen. The silica experimental contents, SiO₂ EDS, were thus quantified from the silicon average contents through the silica and silicon molar masses, neglecting the amount of hydrogen in the copolymer and in the silanol groups, and the carbon coating of the samples used in the EDS measurements.

A Mettler AE 240 balance (Mettler-Toledo Inc., Columbus, OH, USA) with a sensitivity of 0.01 mg with a Mettler BE 33360 accessory kit was used to measure the density of the bulk samples through Archimedes’ principle. The dry samples were weighed in air and immersed in n-octane (95%, Fluka, ρₜₙ-octane = 0.702 g cm⁻³) at room temperature. Each determination was repeated three times per sample.

The density of each sample, ρ, was determined as the ratio of the weight of the sample in air, mₘₙₐir, through the volume of n-octane displaced, V_displaced:

$$\rho = \frac{\frac{\text{m}_{\text{in air}}}{V_{\text{displaced}}}}{\frac{\text{m}_{\text{in air}}}{\text{m}_{\text{in n-octane}}}}$$

where m_{in n-octane} is the weight of the sample immersed in n-octane.

The microstructure of the hybrids was observed with a FEI Tecnai Spirit transmission electron microscope (TEM) (FEI Company, Hillsboro, OR, USA) at 60 kV. Samples were previously prepared in a cryogenic ultramicrotome; 60 nm-thick sections were obtained and deposited on a copper grid, pre-coated with a carbon support film. No staining was used to improve contrast.

Swelling of the bulk samples in water and in a water/ethanol 50/50 vol% mixture was quantified at equilibrium, by weighing pieces of dry samples and after equilibration to constant weight at room temperature, using the previously mentioned balance. A constant value of the weight was attained in around 48 h. Measurements were repeated 10 times in water and three times in water/ethanol for each composition.

The equilibrium water content, EWC, is defined as the mass of water, m_water, divided by the dry mass of the sample, m_dry. Water sorption was also referred to the HEA mass in the sample with the parameter EWCₜₐₙₜ, defined as:

$$\text{EWC} = \frac{\text{m}_{\text{water}}}{\text{m}_{\text{HEA}}}$$

where x_HEA is the mass ratio of HEA in each sample. The water/ethanol equilibrium contents, EWCs, were calculated as mass of solvent uptake, m_water + ethanol, divided by the mass of dry sample, m_dry. An EWCₜₐₙₜ is also introduced to refer the solvent uptake to the organic phase in the composite, as if solely the organic phase of the material swelled:

$$\text{EWC} = \frac{\text{m}_{\text{water} + \text{ethanol}}}{\text{m}_{\text{copolymer}}} = \frac{\text{m}_{\text{water} + \text{ethanol}}}{\text{m}_{\text{copolymer}}}$$

In this equation, x_copolymer = (m_dry – m_silica)/m_dry is the mass ratio of copolymer in the sample.

Table 1

<table>
<thead>
<tr>
<th>Sample Composition</th>
<th>Wₜₙₐir (%)</th>
<th>SiO₂ EDS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEMA (P(HEMA))</td>
<td>0.36</td>
<td>– (–)</td>
</tr>
<tr>
<td>PHEA (P(HEA))</td>
<td>0.92</td>
<td>– (–)</td>
</tr>
<tr>
<td>H00 (P(HEMA-co-HEA) 70/30 wt% SiO₂)</td>
<td>0.52</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>H05 (P(HEMA-co-HEA) 70/30 wt% 5 wt% SiO₂)</td>
<td>4.99</td>
<td>5.18 5.60</td>
</tr>
<tr>
<td>H10 (P(HEMA-co-HEA) 70/30 wt% 15 wt% SiO₂)</td>
<td>10.64</td>
<td>9.06 8.42</td>
</tr>
<tr>
<td>H15 (P(HEMA-co-HEA) 70/30 wt% 20 wt% SiO₂)</td>
<td>14.61</td>
<td>15.09 15.33</td>
</tr>
<tr>
<td>H20 (P(HEMA-co-HEA) 70/30 wt% 20 wt% SiO₂)</td>
<td>19.56</td>
<td>21.21 22.51</td>
</tr>
<tr>
<td>H30 (P(HEMA-co-HEA) 70/30 wt% 30 wt% SiO₂)</td>
<td>28.70</td>
<td>28.45 24.87</td>
</tr>
</tbody>
</table>
3. Results

Fig. 2 displays the FTIR spectra of the dry homopolymers and the copolymer. The spectrum of PHEA shows a broad band between 3100 and 3700 cm\(^{-1}\), characteristic of the hydroxyl groups. This band does not appear in the copolymer spectrum. The CH\(_x\) asymmetric and symmetric stretching peaks appear at 2962 and 2888 cm\(^{-1}\), respectively, but are less pronounced in the PEMA and H00 spectra. The well defined strong peak at 1700 cm\(^{-1}\) appearing in the three spectra corresponds to the C=O bonds of the carboxyl groups. Between 1500 and 650 cm\(^{-1}\) the three spectra are quite complex.

Samples of the three compositions were immersed in water for 96 h, and gently surface dried with desiccant paper. Then, the FTIR spectra were obtained, which have also been included in Fig. 2. The broad band between 3700 and 3100 cm\(^{-1}\), as well as the shoulder at 1650 cm\(^{-1}\) next to the carbonyl peak characteristic of water, appeared in all cases.

Concerning the nanocomposites’ spectra, the broad band assigned to the hydroxyl groups of the copolymer and silanols (3100–3700 cm\(^{-1}\)) does not appear, and the C=O stretching peak (1700 cm\(^{-1}\)) tends to decrease with increasing silica contents (results not shown). At low wavenumbers, the complex spectrum of the copolymer blurs the silica fingerprint region, so it was decided to subtract it from the spectra of the different nanohybrids. The resulting spectra have been represented in the 1400–600 cm\(^{-1}\) range in Fig. 3. The peaks appearing at 1060–1100 and 800 cm\(^{-1}\) are attributed to the Si–O–Si asymmetric and symmetric stretching vibration, respectively, and the peak at 950 cm\(^{-1}\) is characteristic of the Si–OH stretching vibration of the silica phase [7–9,14,28,37,38]. Their intensities increase proportionally to the silica content.

Hybrid Si–O–C bonds from heterocondensation reactions at organic–inorganic interfaces could also be present (1120–1080 and 836 cm\(^{-1}\)), as suggested in the literature [7,38,39], but this cannot be confirmed from the FTIR assays since they overlap the absorption interval of the Si–O–Si bonds.

The residual mass, \(w\), of both homopolymers and the copolymer due to thermal degradation, as well as the derivative curves, \(\frac{dw}{dT}\), are shown in Fig. 4. Decomposition of both PEMA and PHEA polymers seems to take place in two and three main stages, respectively, according to the derivative curves. PEMA decomposes between 210 and 395 °C, whereas PHEA degrades at higher temperatures and more gradually, in the 340–550 °C interval. The copolymer decomposes in the 220–550 °C temperature interval, between the temperatures corresponding to both homopolymers, and exhibits three different degradation steps. At 550 °C, all polymers have totally decomposed without leaving residues.

The thermogravimetric plots of the silica nanocomposites are displayed in Fig. 5. The weight loss seems to involve initially three main stages. The TGA curves shift to lower temperatures and the overall weight loss decreases as the silica content increases. The first degradation step becomes more pronounced and the second gets smoother, as the derivative curves evidence. At the same time, the last degradation step tends to vanish. The thermogravimetric curves of H15, H20 and H30 samples are quite similar, except for the final residues.

The experimental percentages of residues at 700 °C, \(w_{700 \degree C}\), have been determined for the different samples.

![Fig. 2. FTIR spectra of PEMA, PHEA and H00 as dry (---) and after 96 h of immersion in water (---), in the 650–4000 cm\(^{-1}\) region.](image-url)

![Fig. 3. Resultant FTIR spectra of the hybrid nanocomposites after subtraction of the copolymer spectrum.](image-url)
and are listed in Table 1. They agree well with the nominal inorganic contents in all cases. For H05 and H10, the residues after the measurements consisted in silica powder. However, for the hybrids with 15 wt% of SiO₂ and above, residues could be removed easily from the crucibles in one piece. This is why only small pieces of hybrids with 15 wt% of SiO₂ and above were pyrolyzed in the tubular oven. Fig. 6 shows the SEM images of the pyrolyzed residues of H15 and H30 fragments. The residues maintained the original shape but shrunk, displaying a smooth surface with occasional cracks.

The silica contents quantified from the Si average contents obtained by EDS, SiO₂ EDS, on the surfaces and in the bulk, are displayed in Table 1. The surface and bulk silica percentages are very similar and correlate quite well with the nominal silica contents of the hybrids, despite the limitations of this technique.

The dependence of the density, \(q \), of the nanocomposites on the silica content is shown in Fig. 7. The obtained values for PEMA and PHEA polymers are 1.12 and 1.30 g cm\(^{-3}\), respectively. The density increases linearly with the silica content from 1.17 to 1.33 g cm\(^{-3}\).

TEM images given in Fig. 8 lend morphological evidence of the dispersion of silica. The silica phase (dark areas) is uniformly distributed in the nanoscale in all hybrids. Nanohybrids with low percentages of silica display a particle–matrix morphology (small non-interconnected particles dispersed in an organic matrix), which becomes denser with the silica content. Gradually, these aggregates coalesce to produce co-continuous interpenetrated structures where individual silica aggregates are no longer seen. In the H30 sample, the discrete inorganic domains are not detectable.

Fig. 9(a) displays the equilibrium water content of the nanocomposites referred to the dry mass of the sample, EWC, and also referred to the HEA mass in the sample, EWC\(_0\). The error bars representing the standard deviation are included. The EWCs for PEMA and PHEA are 1.18% and 202.52%, respectively. The EWC of the copolymer, 8.34%, slightly decreases with the silica content up to 6.74% for H20, and abnormally increases for H30, which was very rigid as dry. The EWC do not vary significantly with the amount of silica. The theoretical equilibrium water contents, EWC\(_{\text{theor}}\), have been calculated as a linear combination of the specific swelling capacities of both pure homopolymers, and are also represented.

The copolymer and the hybrids are quite rigid and do not absorb water in large quantities or differently. By contrast, ethanol swells significantly the organic phase, even causing the cracking of the nanocomposites with high silica contents. It was therefore decided to swell the nanocomposites in a water/ethanol 50/50 vol% mixture, with the purpose of investigating the influence of silica on the swelling capacity of the copolymer matrix. Fig. 9(b) shows the equilibrium water/ethanol contents for the hybrids referred to the mass of sample, EWECs, and also to the mass of copolymer in the hybrid, EWEC\(_0\), considering in the last case that only the organic phase swells. The theoretical water/ethanol equilibrium contents calculated as a linear combination of the specific swelling capacities of both pure homopolymers have also been represented, EWEC\(_{\text{theor}}\), to compare them with the experimental EWECs. The EWECs for PEMA and PHEA are 33.27% and 225.64%, respectively, and for the copolymer it is 54.00%. The EWEC increases steeply for low silica contents, reaching a maximum somewhere around 5 wt% of silica, which is even higher than the EWEC of PHEA, and decreases progressively afterwards.
until a value for H30 somewhat lower than that of PEMA. The EWEC curve follows a similar tendency.

4. Discussion

The reaction conditions led to a successful manufacture of hybrid nanocomposites, in spite of the limited miscibility of the EMA monomer and the TEOS. Due to the presence of the OH group of HEA the monomers solution was a good solvent for TEOS and water, and therefore no additional cosolvent was needed [40]. The water/TEOS molar ratio employed was below the stoichiometry of the hydrolysis (2 instead of 4); it was, though, sufficient, since water is also a by-product of the condensation. Thus sheets of hybrid nanocomposites of poly(ethyl methacrylate-co-hydroxyethyl acrylate) 70/30 wt%–silica were successfully obtained with varying proportions of silica up to 30 wt%, by the sol–gel method. Silica contents above 30 wt% led to too viscous mixtures hardly injectable in moulds. The samples were optically transparent and increasingly rigid as the percentage of silica increased. This transparency of the composites is an indication of the very small dimensions of the silica phase aggregates: due to the acid catalyzed in situ sol–gel synthesis of the silica phase the condensation rate is much greater than the production of silanols by the hydrolysis reaction [1,7], and silica forms as nanometer sized weakly connected or ramified silicate network [1,18,41,42]. Thus, the nanohybrids must consist in two phases, both of them in the form of networks, finely interdispersed or interpenetrated. Optical transparency is conserved if the characteristic phase domain size remains below 400 nm.

The linear increase of the density of the nanohybrids leads to an extrapolated density for a sol–gel 100 wt% SiO2 of 1.68 g cm$^{-3}$ (Fig. 7), which is between the lower values obtained elsewhere for acid-catalyzed silica gels using higher water/TEOS ratios (1.63–1.32 g cm$^{-3}$ for water/TEOS ratios ranging from 4.2 to 15.3) and the higher value of pure silica glass obtained by curing at 900 °C [1], 2.2 g cm$^{-3}$. These values indicate that the porous structure of the silica produced by the sol–gel reaction are filled with the organic polymer to a high degree. Rodríguez et al. [18] also observed a high efficient filling of the silica network pores by the organic polymer matrix' chains in PHEA/SiO2 nanocomposites synthesized by a similar procedure, and attributed this efficient filling to the silica polymerization.

Fig. 6. SEM images of pyrolysis residues of: H15 (a) at 150× and (b) at 30,000×, H30 (c) at 25× and (d) at 400×.

Fig. 7. Density of the nanocomposites, ρ, as a function of the silica percentage.
occurring faster than the organic polymerization and leaving the organic monomer within the spaces developed as the silica structure grows.

According to the literature, the porous structure of silica polymerized via sol–gel is bimodal: a family of small tunnels in the few-nanometer range (around 3 nm) within
The presence of silica reduces the thermal stability of the nanocomposites, shifting the thermogravimetric curves to lower temperatures. This loss of thermal stability of the silica hybrids was also observed by Costa et al. [9] in PHEMA/SiO2 composites, who explained it on the basis of a decrease in hydrogen-bonding among copolymer chains promoted by the presence of silica. Other authors [11,46] observed the opposite effect and attributed it to a good homogeneity due to nanoscale mixing and to relatively strong heterogeneous hydrogen bonds tethering silica and polymer chains. On one hand, the decomposition thermograms only seem to be significantly shifted by silica contents below 15 wt%; on the other hand, it is the first weight loss stage which increases in importance. Both circumstances suggest that the high temperatures during the measurements allow condensation reactions between non-condensed silanol groups to start again. Water produced in these condensations could then be involved in an accelerated scission of lateral chains of the organic copolymer during the thermogravimetric assays.

The EWC of the copolymer resembles more that of PEMA than that of PHEA, and is lower than predicted by a simple linear composition rule. The deviation of the EWC from this predicted value can be explained by the fact that the copolymer network is much more rigid (has a higher T_g) than the rubbery PHEA network at ambient temperature, and thus it cannot expand as much as PHEA does while it absorbs water, thus giving rise to this strongly nonlinear swelling. Besides, even though the copolymer swells well in a water/ethanol mixture, its EWEc is still lower than estimated with a linear rule, and more similar to that of PEMA. The abnormally high EWC values of H30 are not reliable and must be attributed to the rigidity and rough surface of the sample, which could have retained some water and falsify the results.

The theoretical equilibrium water/ethanol content obviously decreases slightly and linearly as the percentage of inorganic phase increases. The EWEc values of the hybrids are well above the theoretical ones, and those of EWEc follow a similar trend. The increasing relative amount of hydrophilic non-condensed Si–OH terminal groups on the surface of silica disconnected nanodomains, together with the organic network expansion still not hindered by a rigid silica skeleton may account for the initial steep increase in the EWEc. Between 5 and 10 wt% of silica, a maximum in the EWEc is reached, and the later decrease indicates that a continuous silica network interpenetrated with the copolymer network has been developed, in agreement with the integrity of the residues from pyrolysis. The rigid silica skeleton gradually impedes the swelling of the organic chains, which are increasingly constrained. Besides, the increasing connectivity of the silica network is achieved at the expense of terminal silanol groups available for water binding. In the H30 hybrid the silica network is dense and completely continuous throughout the sample, thereby the polymeric matrix swells less than extrapolated, to a degree similar to that of PEMA.

In a different study, these materials were seen to have improved mechanical and bioactive properties [35,47]. The compressive elastic moduli of the nanocomposites...
increases from 15 wt% of silica [35], and is expected to increase more in contact with biological fluids, due to hydroxyapatite coating. The presence of silica accelerates the nucleation of hydroxyapatite crystals in an in vitro test in simulated body fluid (SBF) [47]. After 7 days, the surfaces of the nanohybrids with intermediate silica contents are completely coated: soluble silicates are released to the solution rendering a surface layer even richer in silanol groups that interact with calcium and phosphate ions inducing the nucleation of hydroxyapatite.

5. Conclusions

Hybrid nanocomposite materials of poly(ethyl methacrylate-co-hydroxyethyl acrylate) 70/30 wt%/silica, poly(EMA-co-HEA)/SiO₂, were successfully obtained with varying proportions of silica up to 30 wt%. Silica was found to be homogeneously distributed in the polymeric matrix both in the bulk and at the surface. In the hybrids with low silica contents the silica nanodomains were uniformly interdispersed in the organic phase, leaving a relatively high amount of non-condensed surface Si–OH terminal groups, and tended to aggregate into larger regions leaving spaces of tens of nanometers where the organic network occurred. The silica network seemed to percolate and coalesce to form a co-continuous interpenetrated network around 15 wt% of silica content, leaving less hydrophilic terminal silanol groups available and hindering the swelling of the organic phase.

Poly(EMA-co-HEA)/SiO₂ nanohybrids with intermediate silica contents (10–20 wt%) present interesting morphologies, with the organic/inorganic phases in the form of interpenetrated networks, where the already formed silica interpenetrated network is expected to reinforce mechanically the organic matrix while it confers bioactivity through its silanol terminal groups exposed at the surface. At the same time, the swelling ability of these composites with intermediate silica contents is still not hindered by a too rigid perfect silica skeleton. The simplicity of the synthesis of these materials offers the possibility of controlling the architecture of the obtained nanocomposites. These features indicate these materials could be of potential use in mineralized tissue regeneration.

Acknowledgements

The authors are grateful to Mario Soriano Navarro and Dr. José Manuel García Verdugo from the Centro de Investigación Príncipe Felipe (Valencia, Spain), where the TEM images were obtained. G.G.F. and M.M.P. acknowledge the support by funds for research in the field of Regeneración Medica through the collaboration agreement from the Instituto de Salud Carlos III (Ministry of Science and Health). The support by funds for research in the field of Regeneración Príncipe Felipe (Valencia, Spain), where the TEM images were obtained. G.G.F. and M.M.P. acknowledge the support by funds for research in the field of Regeneración Medica through the collaboration agreement from the Instituto de Salud Carlos III (Ministry of Science and Health). The support by funds for research in the field of Regeneración Príncipe Felipe (Valencia, Spain), where the TEM images were obtained. G.G.F. and M.M.P. acknowledge the support by funds for research in the field of Regeneración Medica through the collaboration agreement from the Instituto de Salud Carlos III (Ministry of Science and Health).

References