Channeled scaffolds implanted in adult rat brain

Cristina Martínez-Ramos,1 Ana Vallés-Lluch,1 José Manuel García Verdugo,2,3 José Luis Gómez Ribelles,1,4 Juan Antonio Barcia,5,* Amparo Baiget Orts,1 José Miguel Soria López,3,6* Manuel Monleón Pradas1,4*

1Centro de Biomateriales, Universidad Politécnica de Valencia, PO Box 22012, E-46071 Valencia, Spain
2Instituto Cavanilles, Universidad de Valencia, Polígono La Coma, E-46980 Valencia, Spain
3CIBER de Enfermedades Neurodegenerativas, Instituto Nacional de Salud Carlos III, Spain
4CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto Nacional de Salud Carlos III, Spain
5Hospital Clínico San Carlos, C/ Profesor Martín Lagos, S/N. Madrid, Spain
6Facultad Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avda Seminario 46113 Moncada, Valencia, Spain

Received 27 February 2012; revised 28 April 2012; accepted 3 May 2012
Published online 26 June 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.a.34273

Abstract: Scaffolds with aligned channels based on acrylate copolymers, which had previously demonstrated good compatibility with neural progenitor cells were studied as colonizable structures both in vitro with neural progenitor cells and in vivo, implanted without cells in two different locations, in the cortical plate of adult rat brains and close to the subventricular zone. In vitro, neuroprogenitors colonize the scaffold and differentiate into neurons and glia within its channels. When implanted in vivo immunohistochemical analysis by confocal microscopy for neural and endothelial cells markers demonstrated that the scaffolds maintained continuity with the surrounding neural tissue and were colonized by GFAP-positive cells and, in the case of scaffolds implanted in contact with the subventricular zone, by neurons. Local angiogenesis was evidenced in the interior of the scaffolds’ pores.

New axons and neural cells from the adult neural niche abundantly colonized the biomaterial’s inner structure after 2 months, and minimal scar formation was manifest around the implant. These findings indicate the biocompatibility of the polymeric material with the brain tissue and open possibilities to further studies on the relevance of factors such as scaffold structure, scaffold seeding and scaffold placement for their possible use in regenerative strategies in the central nervous system. The development of neural interfaces with minimized glial scar and improved tissue compatibility of the implants may also benefit from these results. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A: 3276–3286, 2012.

Key Words: scaffold, biocompatibility, brain, angiogenesis, neural regeneration

INTRODUCTION

Injury in the central nervous system (CNS) of mammals causes severe and irreparable disabilities due to failure of neural tissue regeneration. There is evidence that axons in the CNS do have some capacity to regrow after injury. The extent of this growth, however, is quite limited and variable, depending on the age of the subject and the severity of the lesion. Neural regeneration could commonly be seen after injury in young individuals.1,2 By contrast, the adult CNS shows a very limited capacity for regeneration after injury.3,4 Some studies have shown regeneration in the adult CNS following a microlesion, with regrowth of cut axons across the lesion site.5–7 The reason why the adult CNS is nonpermissive for neural regrowth is thought to lie in a combination of factors: death of injured neurons, reduced capacity of adult neurons to grow when injured, presence of inhibitory factors,8 and lack of the necessary trophic molecules for cell survival. Furthermore, a major problem in tissue regeneration is the revascularization of the site.9,10

It is now well known that neural progenitor cells reside in the adult brain11–13 that they supply new neurons after injury processes,14 and that cell turnover occurs within specific brain regions throughout adulthood.15,16 This continuous neurogenic process is sustained by the life-long

*These authors contributed equally to this work.
Correspondence to: M. M. Pradas; e-mail: mmonleon@upvnet.upv.es
Contract grant sponsor: Spanish Fondo de Investigacion Sanitaria (Spanish Ministry of Health); contract grant numbers: CP04/00036 and PI05/075
Contract grant sponsor: Spanish Ministry of Science and Innovation; contract grant number: MAT2008-06434
Contract grant sponsors: Fundación Ramon Areces; Copernicus Program of University CEU-Cardenal Herrera; Regenerative Medicine Program Agreement between the Generalitat Valenciana and the Spanish National Health Institute Carlos III

3276
persistence of neural stem cells (NSCs) within restricted CNS areas. In the adult mammalian brain the genesis of new neurons has been consistently documented in the subgranular layer of the dentate gyrus of the hippocampus, and in the subventricular zone (SVZ) of the lateral ventricles.12,16–19 The telencephalic subventricular zone is the main neurogenic niche and the main source of adult neural stem cells.20–24

Still, the size of the lesion is a very important limiting factor in the process of regeneration. Large damages imply a loss of the tissue structures needed by the newly produced neural cells to migrate and rebuild the brain tissue.25,26 To overcome this problem and favor the regeneration of neural tissue after CNS injury effort has been devoted to investigate the use of different types of polymeric scaffolds in the brain. Scaffolds made of hyaluronic acid, poly-(epsilon-caprolactone), poly(glycolic acid) or even polydimethylxilosane have been employed in animal models of cortical damage.9,27–30 Recent studies stress that vascularization and local angiogenesis processes become crucial for a correct neuroregeneration strategy.21 A suitable scaffold for tissue engineering in the brain should support cell growth, maintain differentiated cell functions, be highly porous and be as compliant as the host tissue; the porosity facilitates the accommodation of many cells,29,32 enables a uniform distribution of the cells and the diffusion of oxygen and nutrients from host tissue, and must permit the neovascularization of the matrix if the cells inside it must survive.

As a tool in regenerative strategies, synthetic scaffolds may be useful as guides for axonal extension and as paths for migrating progenitor cells. They can also provide a shelter for neural cells against aggressive inflammatory local environments produced after trauma or degeneration processes. Promising results have been obtained with polymers used to repair neural defects in central and peripheral nervous tissues.33–35 The degree of hydrophilicity of the artificial substrate has a strong influence on cell behavior. We have previously investigated the ability of synthetic substrates based on copolymers of poly(ethyl acrylate) (PEA) and poly(hydroxyl ethyl acrylate) (PHEA) to sustain survival and neuronal differentiation of NSCs and other neural cells,36–38 with the aim of selecting a chemical composition suitable for the fabrication of more complex scaffolding structures. That work studied the influence of the hydrophilicity on cell behavior in the acrylate copolymer family and led us to conclude that the more hydrophobic compositions behaved as better substrates for cell adhesion, whereas the more hydrophilic ones were much less suited for cell adhesion. On the basis of those findings, we designed three-dimensional channeled scaffolds based on a PEA-PHEA copolymer; and in the present work we investigated whether neural cells could colonize these polymeric scaffolds both in vitro and in vivo, when the scaffolds were implanted in two regions of different neurogenic potential: the cerebral cortex and in the proximity of the SVZ neural niche. We characterized the cell typologies invading the scaffold when seeded in vitro with neural precursors (neurospheres); we have ascertained in vivo the ability of the colonizing cells to promote neurite extension and local angiogenesis within the synthetic structures.

MATERIALS AND METHODS
Preparation and characterization of the channeled scaffolds
Two different types of channeled scaffolds were prepared following a porogen-template leaching method as described in Refs. 39–41. The first scaffold structure consisted in a matrix with unidirectionally aligned parallel cylindrical isolated channels [type I scaffolds, Fig. 1(A,B)]; the second structure consisted in a matrix with interconnected orthogonal cylindrical pores in the three spatial directions [type II scaffolds, Fig. 1(C,D)].

The polymer matrix for both types of structure was the same: a copolymer of ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) with EA:HEA mass ratio of 9:1, crosslinked to form a network with ethyleneglycol dimethacrylate (EGDMA) in a mass ratio of (EA+HEA):EGDMA = 99:1. The matrix precursor reactants mixture consisted in monomers of EA, (99% pure, Sigma–Aldrich, Spain), HEA, (99% pure, Sigma–Aldrich, Spain) and EGDMA (98% pure, Sigma–Aldrich, Spain), all of them used as received without further purification, in the mass ratios specified above. To this mixture azo-bis-isobutyronitrile, AIBN, (Merck, 98% pure) in weight percentage of 0.01% was added to act as thermal initiator of the polymerization. Moulds with the different porogen templates were filled with this reactant mixture, and the polymerization was carried out for 24 h at 60°C, and for 24 h more at 90°C. The moulds for type I scaffolds were prepared as follows: glass tubes of 4 mm inner diameter were cut in 3.5-cm long pieces, stuffed with 40 µm diameter polyacrylonitrile (PAN, Montefibre Hispania SA, Spain) aligned fibers in the direction of the tube axis, and sealed on one side. The reactant mixture described above was vacuum-injected into these glass moulds, which were immediately capped and placed in an oven for polymerization. After completion of the polymerization the PAN fibers were eliminated from the materials by dissolution in N,N-dimethylformamide (99.8%, Aldrich, Spain). The resulting scaffolds were washed in boiling ethanol for 24 h to remove residuals and nonreacted monomers, and were finally dried in a vacuum desiccator at 80°C until constant weight. For use in the experiments, both in vitro and in vivo, 1-mm thick cylinders cut normal to channel direction were cut from the obtained samples; from these sections, pieces of 4 mm × 1 mm were cut. Thus, the scaffold pieces for the experiments were in the form of bars with approximate dimensions of 1 mm thickness and faces of 4 mm × 1 mm normal to pore direction.

The moulds for type II scaffolds were prepared as follows: a porogen template was produced by sintering piled sheets of Nylon fabrics (Saati SA, Barcelona, Spain) with nominal thread diameter of 80 µm and mesh opening of 120 µm; this template was placed between glass plates to obtain a 3D mould. The previously prepared reactant
mixture was injected into these moulds and polymerized at the above mentioned conditions. After polymerization the obtained sheets were cut into smaller pieces and rinsed in nitric acid (65%, Scharlab, Spain) under gentle shaking for 48 h to dissolve the fiber template. Finally, the obtained materials were washed in boiling ethanol for 40 h, and dried 24 h at room temperature, and 24 h more under vacuum at 60°C. From the ~1-mm-thick sheets thus obtained pieces in the form of bars with faces of 4 mm × 1 mm were cut and used in all the experiments [Fig. 1(F)].

All scaffold samples were sterilized with a 25 kGy dose of gamma irradiation in a ⁶⁰Co source (Aragogamma, Barcelona, Spain).

In vitro culture of neural stem cells in scaffolds
Neural stem cell cultures were established as previously described.³⁶ Tissues obtained from the SVZ of postnatal rats were mechanically dissociated with a fire-polished Pasteur pipette. Cell suspensions at a surface density of 8000 cells cm⁻² were cultured in DMEM/F12 basal medium in the presence of epidermal growth factor (EGF) and fibroblast growth factor (FGF). The spheres formed (neurospheres) were collected and dissociated every 2–3 days and the total number of viable cells was assessed at each passage by trypan blue (Sigma) exclusion. Cells at passage 3 were mechanically dissociated into single cells and cultured without EGF and FGF at 12,000 cells cm⁻² according to the Gritti and Vescovi method,⁴² and seeded into the different

FIGURE 1. A,B: Electron micrographs of type I scaffold, a matrix with parallel isolated cylindrical pores. C,D: Electron micrographs of type II scaffold, a matrix with interconnected cylindrical pores laid out in an orthotropic three-dimensional arrangement. E: scheme showing the different positions of the implants in the brain, placement in cerebral cortex (*) and near the SVZ (**). F: bright field microphotograph of implant piece of type II scaffold. Scale bar = 300 µm in A, B and 800 µm in C, D. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
biomaterials. First 30 µL of concentrated neural cells suspension were laid on the scaffold, and incubated for 1 h at 37°C and 5% CO₂ to enhance seeding efficiency, after this time, 300 µL of medium were added to each well and changed every 2 days. The culture was evaluated at day 5.

In vivo scaffold implantation

Eight-week-old Wistar female rats, weighing ~220–250 g, were used for the experiments. Animals were anesthetized with 3.0% and maintained in 0.4–0.8% isoflurane in 70% N₂O and 30% O₂ and immobilized in a stereotactic head frame with the incisor bar set. All surgical and experimental procedures were approved by the institution’s Ethical Committee. Under aseptic conditions, a midline incision was made taking the bregma as reference point. A 4-mm diameter bone trap was performed to 1 mm from bregma and 1 mm right of midline. A block of cortical tissue (1.0 mm × 4.0 mm × 1.0 mm) was removed mechanically with an excavator spoon and a lesion was made in the frontal region of the brain. An empty, unseeded acrylic scaffold of dimensions 1.0 mm × 4.0 mm × 1.0 mm [Fig. 1(F)] was placed into the lesion site.

Animals were divided in two groups (n = 8 each) according to the lesion site. In a first group, the lesion was performed in the outer part of the cerebral cortex at 3 mm ventral to the skull at the midline. A second group was injured more deeply (at 6 mm ventral), close to the SVZ, see Figure 1(E). For both groups control animals were intervened and left without implant.

Tissue preparation and histology

After 8 weeks, animals were perfused transcardially with 4% paraformaldehyde (PFA) and the excised brains were postfixed with 4% PFA at 4°C overnight. Then, brains were cryoprotected by immersion in PBS 0.1 M and pH 7.5 containing 30% sucrose for 3 days and included in OCT. 20 µm coronal sections were obtained by using a cryostat (Leica, CM 1900) and collected onto superfrost slides. After washing with PBS 0.1 M (3 × 5 min) sections were processed for hematoxilin–eosine staining to reveal the presence of neural cells within scaffolds.

Immunohistochemistry

The *in vitro* cultures on acrylic scaffolds and the sections from the *in vivo* assays were processed for immunohistochemistry. Samples were washed with 0.1M sodium phosphate buffer (PBS, pH 7.4) and postfixed for 10 min in 4% paraformaldehyde. After 30 min permeabilization (10% fetal bovine serum and 0.1% triton X-100 in PBS) samples were incubated with the different primary antibodies. Anti-neural class IIIB-tubuline (Babco, cat n° MM-S405-P, 1:500, anti-NeuN (Chemicon, cat n° MAB377, 1:100), anti-glia fibrillary acidic protein (GFAP Sigma, cat n° G-3893, 1:500), and anti-CD31 (BD Bioscience Farmingen, cat n° 550300, 1:50) were incubated overnight at 4°C in a humidified chamber. After rinsing in 0.1M PBS, cells were incubated for the secondary antibodies goat anti-rabbit cyanine conjugated Cy2 or goat anti-mouse cyanine conjugated Cy3 (Jackson Immunoresearch, 1:200) during 1 h.

Nuclei were counterstained with DAPI (4’,6-diamidino-2-phenylindole, Sigma, 1:5000). After additional washes, the stained samples were observed in a microscope equipped for epifluorescence (Leica DM6000). Images were obtained with a digital camera (Leica 480 ×). To better study the cell morphology of NSCs images were obtained by confocal microscopy (Leica TCS SP2 AOBS inverted confocal microscope).

RESULTS

Adult neural stem cells colonize the scaffold and differentiate into neurons and glial cells within the channels in vitro

The adult neural stem cells were able to completely colonize the scaffolds’ channels during the culture time analyzed, and exhibited good adhesion and survival. These neurospheres are known to give rise to differentiated neurons, astrocytes, and oligodendrocytes. After 5 days *in vitro* culture within the parallel-channel (type I) scaffolds the NSCs obtained from the neurospheres differentiated into young neurons immunoreactive for the neuronal markers NeuN [Fig. 2(A)] and Tuj-1 [Fig. 2(B,D)] and astrocytes [Fig. 2(D)], which appeared distributed over the scaffold’s exterior surfaces and within the channels. Completely similar results were obtained with the type II scaffolds.

Integration of the scaffolds in the cortical region

Under the specific stereotactic coordinates specified above scaffolds were implanted in two different locations to study the distinct neurogenic potential of both regions. Figure 1(E) shows a scheme of the scaffold position (asterisks) after its placement near the SVZ (**) and in the cortex (*) of the adult rat brains.

GFAP reactivity reflects the astrocyte population around and within the biomaterial. After 8-week implantation, the density of GFAP-positive cells enveloping the biomaterial was not abnormally high, both for the materials implanted in the cortical region [Fig. 3(C)] and near the SVZ [Fig. 3(D)]: thus, the brain tissue response and the inflammatory reaction subsequent to the surgical implantation were moderate, did not lead to an impervious glial scar, and permitted an excellent integration of the material [Fig. 3(A,B)]: the typical slight inflammatory reaction following any surgical injury in the CNS was observed in the first days (data no shown), but it had almost disappeared after 8 weeks, leaving the artificial matrices surrounded by a thin layer of astrocytic cells. The results show cells infiltrating the channels and around the implant; but in comparison with the materials implanted near the SVZ [Fig. 3(D)] in the cortex the degree of colonization was significantly less, with empty noncolonized spaces visible inside the scaffold [white arrows in Fig. 3(C)]. In all cases, however, the implants remained firmly adhered to the host brain.

Integration of the scaffolds implanted near the SVZ

In the case of the materials implanted near the SVZ, after 2 months it was possible to observe cells abundantly
colonizing the scaffolds in the interior of the channels [Figs. 3(D) and 4(A,B), cells stained with hematoxylin]. GFAP-positive astrocytes were observed surrounding the implant, but they did not constitute a developed scar [Fig. 4(C)], and they did not impede the colonization of the channels by others cells [Fig. 4(D–F)]. Confocal microscopy revealed elongated neurites immunoreactive for Tuj-1 [in red, white arrows in Fig. 4(F)] that colonized the interior of the scaffold channels. Besides, these young neurons (immunopositive for Tuj-1-marker) that had migrated into the scaffold were observed to be in contact with GFAP immunoreactive astrocytes [in green, head arrows in Fig. 4(F)]. Even though in all cases the biomaterials were well attached to the surrounding tissue, as evaluated from the brain sections stained and treated for immunohistochemistry, the results of this group (implants near the SVZ) showed a better colonization and cell infiltration by neural cells than the other group (implants in the cortex). Thus, degree of integration and cell invasion of the implants were significantly different at both implant sites.

Neural cells and neoangiogenesis within scaffolds implanted near the SVZ

To further characterize the kind of the cells colonizing the scaffold after 2 months, brain coronal sections were analyzed for neuronal (Tuj-1) and endothelial cell markers (CD31). The sections containing the biomaterials implanted close to the SVZ permitted the transversal observation of the channels [Fig. 5(D)]. After 2 months new neurons and blood vessels could be found within the channels (Figs. 5 and 6). In a bright field microphotograph [Fig. 5(A)] the biomaterial placed close to the SVZ can be seen to be continuously integrated with the surrounding neural tissue and to be completely colonized by numerous cells stained with DAPI [nuclei in blue in Fig. 5(B)]. A detailed image [Fig. 5(C,D)] evidences the presence of new vessels formed by CD31-positive cells [white arrows in Fig. 5(C,D)]. Vessels were observed to be distributed randomly along the scaffold channels [Fig. 5(D)]. Tuj-1+ neurons with elongated form (migratory-like neurons) were found inside the channels with an intimate contact of the astrocytes (Fig. 6). Moreover,
numerous axons [white arrows in Fig. 6(D)] and young neurons [white arrowheads in Fig. 6(A,B,D)] were observed at the scaffold-tissue interface close to the SVZ and entering from the host tissue into the scaffold, demonstrating the permeability of this structure.

DISCUSSION

Tissue engineering in the brain has become possible since the discovery of the—though limited—actual regeneration potential of neural stem cells residing in the adult organ.44 This has raised founded expectations for cell therapy strategies in many CNS diseases.45–48 However, pure cell supply strategies do not seem for the moment to achieve the desired results, and they are proving to be insufficient for axonal growth and neural reconnection across long distances.49 Here is where synthetic biomaterials may be of help, in that they may provide both a sheltering environment that protects the regenerating tissue against the inflammatory and aggressive medium in the lesion and a guiding structure for the oriented growth of neuronal networks. This is why it is important to test the compatibility of CNS-neural cells and synthetic structures possessing both a cell-friendly chemistry and well-defined pore architecture. The response of neural cells to the chemistry of the scaffold materials of the present study was investigated in previous studies36–38; footing on those results we undertook to manufacture

FIGURE 3. Integration of the scaffolds in the host tissue after 8-week implantation. A–C: type II scaffolds implanted in the brain cortex region: DAPI staining (blue in A and B, which is a magnification of A) reveals an intimate contact between the scaffold (asterisk in A) and the surrounding tissue. A thin glial scar (GFAP-positive cells in red) could be seen around the scaffold (C, D). Pores of the scaffolds implanted in the cortical zone appeared sometimes devoid of cells (arrows in C) when compared with the scaffolds implanted near the SVZ (D shows a type I scaffold implant). Scale bar = 500 μm in A, D; 100 μm in B and 50 μm C. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
scaffolds possessing two definite different porous structures bearing some resemblance to two important types of circuitry structures in the brain: that of the cortex, where neuronal interconnections follow a pattern of rows and columns more or less orthotropic, and that of axonal fascicles and tracts (such as the nigro-striatal pathway), where axons run in parallel bundles. These two morphologies correspond to the two types of scaffolds here prepared [see Fig. 1(A–D)]. Type II scaffolds reproduce an approximately orthotropic pattern of cylindrical interconnected pores, whereas the pores of type I scaffolds are straight, parallelly aligned isolated cylinders. Whereas the parallelly aligned channels of type I scaffold represent a porous structure suited to guide axonal outgrowth and reconnect neuronal centers across some distance, the porous structure of type II scaffold is able to lodge a larger number of cells in an interconnected multilayered 3D arrangement, and could thus be more appropriate to provide cell lodging in the case of more extensive tissue damage. Both types of porous structures differed by the diameter of their typical pores and also by their interconnectivity. The results of cell cultures and of the in vivo implants demonstrate that these differences have no consequence on their invasibility by the cells, since both structures were abundantly colonized. In this respect, the most restrictive case a priori was represented by the type I scaffolds, because of their smaller pore diameter (40 μm vs. 80 μm in type II scaffolds) and of the lack of pore-to-pore interconnection. The scaffolds

FIGURE 4. Type I scaffolds implanted 8 weeks near the SVZ. A and B: Optical micrograph of a section stained with hematoxilin to reveal the presence of neural cells (the gray spot in the scheme of A indicates scaffold location; the SVZ is singled out in red in the scheme). Cells are shown at the scaffold–tissue interface (A), and a detail of a channel (B) reveals numerous cells (scheme A in the insert to Figure A). C: Glial cells immunoreactive for GFAP (green) in around the scaffold. D–F: Reconstruction by confocal images of the longitudinal channels showing Tuj-1+ neurons (white arrow in D, F). GFAP+ glial cells (arrowhead in F) and CD 31+ cells could be seen inside the channels, suggesting the presence of some new blood vessels (arrowhead in D). Blue in C, D, F: nuclei stained with DAPI. Scale bar = 100 μm in C, and 50 μm in E, F.
sustained, this notwithstanding, differentiated neural cells both in vitro and in vivo, in this last case during 8 weeks, which implies an efficient nutrient and metabolite transport through and along the pores, guaranteed by sufficient microvessel formation: angiogenesis took place within the cylindrical pores, as ascertained directly by the specific endothelial cell markers [Figs. 4(D, F) and 5(D)] and indirectly by the very survival of the cells. This is a remarkable finding, since it was by no means at the outset clear that capillaries could form within these types of synthetic structures, characterized by long individual cylindrical pores only weakly interconnected (type II scaffolds, where parallel channels are communicated by perpendicular throats at spacings of 120 μm) or not interconnected at all (type I scaffolds). This process of angiogenesis may have been stimulated by a local hypoxic environment within the channels, since these represent long completely impervious cylindrical surfaces (type I scaffolds) or only interconnected at the intersection points of the channels (type II scaffolds); hypoxic conditions are known to stimulate the migration ad differentiation of endothelial cells and their progenitors.51,52 On the whole, the neovessels inside the scaffold’s pores and the long term survival of differentiated neurons and glial cells imply a pervious implant–host tissue interface, with no significant glial scar, through which numerous passing axons could be identified (Fig. 6).

The in vitro and in vivo colonizability of these structures is of relevance for the philosophy of cell therapy in the brain. In vitro the structures were able to host viably neural cells uniformly populating the material, which could thus become a vector for cell transplantation. In vivo, though the scaffolds had been implanted devoid of cells, they were abundantly colonized by neural cells in vivo, mostly GFAP-positive astrocytes. These cells could have originated from neural stem cells which migrate from proliferative sites to sites of lesion,13,53 or they could be the descendants of cells drained into the pores of the material during the surgical process of implantation. Our experiments are insufficient to
decide on this matter. The latter hypothesis seems more plausible as an explanation for the origin of the endothelial cells and neovessels inside the pores, as surgery always entails the rupture of the blood-brain-barrier and the consequent bleeding and angiogenesis at the lesion margins; however, the migratory hypothesis has more weight for the origin of the other neural cells inside the channels, in the light of the different colonization patterns that the scaffolds exhibited when implanted near the SVZ (a highly proliferative region) and close to the cortex: these last were significantly less colonized than the former ones [Fig. 3(C,D)]. In any case, those cells were viable within the synthetic millimeter-sized structures, which testifies to a rapid and efficient spontaneous vascularization of the implants that enabled cell nutrition and metabolism. The guess suggests itself that material structures encountered by cells in their migratory routes may conform the final geometrical pattern of their networks. Whether an exterior cell supply is necessary or not for the reconstruction of certain tissue structures, and whether this necessity depends on their anatomical location is a question of greatest importance for the philosophy of cell therapy; though not conclusive in any sense, our results help pose the problem in a way that further experiments may explore.

CONCLUSIONS

The acrylate chemistry is highly compatible with neural stem cells (as it is also with other cells), both in vitro and in vivo. Channeled scaffolds made out of them with pore diameters in the range from 40 to 80 μm and pore geometries resembling typical brain structures achieve a uniform colonization by neural cells. Neural stem cells seeded in vitro within them differentiate to viable neurons and glial cells. When implanted in vivo, the scaffolds integrate into the host tissue without any dense glial scar or any type of appreciable discontinuity; the scaffold–tissue interface is pervious to neurons and axons, and the geometrical layout of the pore structure organizes the growth of the tissue. The colonization density pattern seems to be higher when the implant is close to the SVZ, suggesting that the cells colonizing the scaffold’s pores originated in the nearby proliferative regions. The observed long term

FIGURE 6. Scaffold-tissue interface of type II scaffolds implanted close to the SVZ after 8 weeks. Merged confocal images (red in A, B) of neural cells within the scaffold’s pores, showing TuJ-1+ neurons (white arrows in A, B, D) crossing the glial interface and entering the implant. Scale bar = 200 μm in A; 50 μm in B and 25 μm in C,D. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
viability of the neural cells within the pores is maintained by neovessels formed within the scaffold, probably from brain microvascular endothelial cells proceeding from the breakdown of the blood–brain barrier during the injury. The scaffolds’ pore geometries and sizes permitted this neovascularization within both types of constructs.

ACKNOWLEDGMENTS

The authors acknowledge an anonymous referee for pointing out the possible role of the pore geometry in creating a hypoxic environment that favors neoangiogenesis. They thank Alberto Hernandez Cano and Eva Mª Lafuente Villarreal at CIPF for technical assistance and their knowledge of confocal microscopy.

REFERENCES

